Home Print this page Email this page
Users Online: 300
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2021  |  Volume : 10  |  Issue : 2  |  Page : 115-122

Kolaviron ameliorates toxic effects of aluminum chloride on the hippocampus of fetal Wistar rats in utero: Biochemical and ultrastructural observations

Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria

Correspondence Address:
Dr. Susan Folashade Lewu
Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin. P.M.B. 1515 Ilorin, Kwara State
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijhas.IJHAS_117_20

Rights and Permissions

BACKGROUND: This study was designed to investigate the biochemical and ultrastructural effects of kolaviron (Kv) on the hippocampus of fetal Wistar rats exposed to aluminum chloride (AlCl3) toxicity in utero. MATERIALS AND METHODS: Fifty female Wistar rats were selected at random and mated. Following confirmation of mating, pregnant rats were assigned into five groups (n = 5). Controls: Group A received distilled water; Group B: 0.6 ml of corn oil; Group C: 200 mg/kg of Kv; Group D: 100 mg/kg of AlCl3 and Group E 100 mg/kg of AlCl3 and 200 mg/kg of Kv. Administration was done from days 8-10 and 15-17 of gestation during the 2nd and 3rd weeks respectively. Biochemical analyses were investigated to assess oxidative stress levels, while transmission electron microscopy (TEM) examined ultrastructural changes. Pregnant animals were sacrificed on day 20 of gestation; fetuses, their brains, and hippocampi were excised, respectively. Hippocampal tissues of fetuses were homogenized in 0.25 M of sucrose solution for biochemical assay while some were fixed in 2.5% phosphate-buffered saline-based glutaraldehyde for TEM. RESULTS: Elevated levels of Al, malondialdehyde, nitric oxide, and interleukin 6 were observed in the hippocampi of fetuses whose mothers received AlCl3. TEM revealed loss of nuclear membrane and increased condensation of chromatin materials in the same group. However, significant reduction of these enzymes including improved ultrastructural alterations were observed in the fetal hippocampus of the AlCl3 + Kv-treated group. CONCLUSION: This study showed that Kv significantly reduced neurodegenerative effects induced by AlCl3 in the hippocampii of fetal Wistar rats in utero probably owing to its antioxidant and anti-inflammatory properties.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded252    
    Comments [Add]    

Recommend this journal